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Abstract— Value-based algorithms for reinforcement learning
such as Q-learning offer state-of-the-art performance in many
settings with discrete action domains. However, plain value-
based algorithms are limited in large or continuous action
domains, which are needed for applications in robotics. Here,
we propose to approximate the action-dependent part of the
Q-function locally and to learn it on-the-fly from a data buffer.
This gives rise to a simple framework for learning universal
Q-functions in continuous action domains from off-policy data.
We demonstrate the feasibility of our approach using a goal-
conditioned robot pushing task.

I. INTRODUCTION

Reinforcement learning provides the field of robotics with
a powerful toolbox enabling the robot to learn complex tasks
only from rewards [1]. This combination has proven to be
very successful with many applications such as autonomous
vehicle control [2], manipulation [3], or direct learning of
visuomotor policies [4]. Reinforcement learning in robotics
presents an intriguing avenue of current research due to its
potential to lead the way to truly intelligent self-learning
machines that adapt to dynamical environments and improve
over time.

One of the specific challenges to the application of re-
inforcement learning to robotics is that typically, state and
action spaces are both high-dimensional and continuous. In
this work, we aim at providing an additional point of attack
to the challenges posed by continuous action spaces. We
propose a framework that combines value-based off-policy
reinforcement learning with a lazy learning algorithm for
the action value model to make it applicable to continuous
action domains. To the best of our knowledge, this is the first
work proposing such an approach. Further, we introduce a
modification to stabilize the learning process, and discuss the
combination of our approach with popular algorithms in deep
reinforcement learning, such as Deep Q Networks (DQN) [5]
and Double DQN [6].

II. RELATED WORK
A. Q-learning

Value function methods for reinforcement learning such
as Q-learning [7], [8] aim at learning the Q-function from
the interaction with the environment which then implicitly
defines a policy. In many real-world problems, the state and
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action spaces are too large to represent the Q-function in a
tabular form. In this case, it can be parameterized, e.g. by a
deep neural network [9]. This has allowed for great successes
e.g. for the task of playing complex Atari games [5], [6].

While Q-learning approaches are very successful in dis-
crete action spaces, traditional approaches are limited in
continuous or large action spaces, as for example needed
in robotics. There exist different approaches to extend Q-
learning to continuous action domains, which include learn-
ing Q-values for discrete actions and interpolating between
them [10], and, more recently, learning a representation of
the Q-function that allows for an analytical maximization
step with respect to the action [11]. In this work, we instead
propose to combine an eagerly learned state value function
V(s) with a local action value model that is lazily learned
directly from data. This is different from [10] in that we do
not rely on learning Q-values for a discrete set of actions, and
it is different from [11] in that no specific representation of
V() has to be learned, but our approach is in fact compatible
with any off-the-shelf function approximator.

B. Policy Gradient Methods

In domains with continuous action spaces, policy-gradient
based methods are a popular choice [12], [13], [14], [15].
These approaches have in common that they require ex-
plicitly learning the policy in addition to the Q-function.
In contrast to that, we avoid the additional complexity of
learning an explicit policy. Instead of training a policy to
choose optimal actions, the optimal action in our approach
is found using the lazy action value model.

C. Lazy Q-Learning

Lazy learning [16] has been combined with Q-learning
before. In [17], actors in a pursuit game use lazy learning
to predict action values for state-action pairs directly from
neighboring state-action pairs in the database. A similar
approach is used in [18] in a cooperative multi-robot setting.
Our approach differs from both of the aforementioned in that
the state value function V'(s) is not lazily but indeed eagerly
learned, and combined with a lazily learned local action
value model in order to obtain the Q-function Q(s,a). This
approach allows us to make use of the good generalization
properties of deep neural networks for the value function,
while being able to avoid the limitations of classical Q-
learning in continuous action spaces by lazily creating local
action value models. In other words, we propose to extend Q-
learning to continuous action spaces by expanding the global
information in the value function with local information
on the dynamics, the latter being obtained directly from



data by lazy learning. Considering the example of a robot
manipulation task, the value function contains the global
information on which end effector trajectory will result in
a successful manipulation, and the lazy action value model
uses local experience data at each step to decide which joint
movements will move the end effector towards or further
along this trajectory.

III. Q-LEARNING AND MARKOV DECISION PROCESSES

We consider setups that can be described as a discrete-
time deterministic Markov decision process (MDP) [19]
with states s € S, continuous actions a € A C R"e,
and goals g € §. The deterministic transition function
T :8 x A — S assigns each combination of state and
action to the resulting next state. The agent interacts with the
environment following its deterministic policy 7 : S — A,
collects data tuples of the form dy = (s, ay, sy, re, gr) at
each discrete time step ¢ € {0, 1,...}, and stores it into its
database D = {dy,dy,...}. Here, s; is the state at time ¢, a;
is the action taken, and s} is the resulting state. Dependent
on the goal g;, the agent receives the reward r; that follows
the reward function R : S X A x G, i.e. 1, = R(s¢, at, gt).

The Q-function quantifies the value of choosing action
a in state s, assuming that the given policy 7 is followed
thereafter.

o0

Q" (s,a) =B |> yrpw|si=s, a=a,m| (1)
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Here, v € [0, 1) is the discount factor trading off immediate
reward with future reward. Q*(s,a) = max, Q" (s,a) is
the Q-function of the optimal policy 7*, fulfills the Bellman
equation

Q*(s,a,9) = R(s,a,9) +7V*(T'(s,a),9) , (2

and can be learned using Q-learning [7], [8]. Here,
Vi(s,9) = max[Q"(s, a, 9)] 3)

is the state value function.

Universal or goal-conditioned value functions [20] capture
the value of a state-action pair under different goals g € G
within the otherwise same MDP. If the reward function is
known, universal value functions can be learned in a sample-
efficient way using Hindsight Experience Replay [21].

IV. LAZY ACTION VALUE MODELS FOR Q-LEARNING

In the following we introduce our approach combining
value-based reinforcement learning with a lazy action value
model. We also discuss its limitations, investigate its stability,
and touch on the combination of our approach with popular
algorithms in deep reinforcement learning. Our aim is to
learn universal Q-functions from off-policy data collected by
the agent in continuous action spaces.

A. Lazy Q-function estimate

Instead of explicitly learning the Q-function Q*(s,a,g),
we estimate the action values lazily. Specifically, we assume
a linear dependency on the actions « in the sense that

Q*(s,a,9) = als,g) + B(s,9)"a . 4

This linear Taylor approximation works well in robotics
applications with small joint movements per time step. In
the limit of infinitesimally small actions, i.e. ||a|| — 0, it
becomes exact. Please also notice that while we use an action
value model that is linear in a here, our framework does
not rely on this. Other local function approximations, for
example higher-order Taylor expansions in a, could be used
as well.

The parameters «(s, g) and (s, g) are learned lazily from
the data set by minimizing

(a(s,g). B(s,g) = argmin | 3 A2a,B)| )

B (s4,9:)€B(s,9)

with
Ai(e, ) = [a+ Tai] — [ri +9V*(si,g:)] . (6)

where B(s,g) C S x G is a neighborhood around (s, g) in
state-goal space.

B. Self-consistent state value function

Using the local action value model, the Bellman update
(3) takes the form

V7 (s,9) = als, g) + max (s, 9Ta )

where the maximization step can be done analytically in
many cases. For example, if A = {R" | ||a|| < ¢}, then
max,e B3(s,9)7a = c||B||. The update (7) relies on the
applicability of the local model to the Q-function (4), i.e. on
the approximately linear dependency of Q(s, a, g) on a in our
case. Violations of this assumption can lead to instabilities,
and therefore have to be treated carefully.

C. Stability

The neighborhood B(sp,g0) € S x G is a sufficiently
large volume around (sg,go) in which (4) still holds true
approximately for all (s,g) € B(sgp,go) with the same
parameters «(sg,go) and (3(so, go). The neighborhood is
sufficiently large if it covers enough sample points to capture
all relevant information on the local dynamics.

Is is not always possible to find such a B(sg,go) that
has nonzero volume in & x G. For example, consider an
environment that gives negative rewards as long as the agent
is in a “forbidden” area. At the border of the “forbidden” area
to the “neutral” area, the agent’s actions will either result in
a negative reward or no reward, resulting in a discontinuity
of Q*(s,a, g). Regardless of how small B(sg, go) is chosen,
such a discontinuity will always violate (4) and thus lead to
instabilities during the Bellman update step (7) as illustrated
in figure 1.
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Fig. 1. A Q-function Q*(s,a,g) (in blue) exhibits a sharp step in the
action space A, thus violating the assumption (4). The linear model fitted
to the data (red dots) is shown in red. Using the linear-model Bellman
update step (7), the linear model will lead to a systematic overestimation
of V*(s,g), which will prevent convergence. Using the maximum-bound
version (8) instead avoids this issue.

We account for this by refining the Bellman update (7) to
V*(s,9) = min {a(s, 9) + max 3(s,9)" a, (®)
ac

max ri + YV (s}, gi }

i: (si,gi)EB(ag)[ Wi 90

In words, we clip the prediction of the lazy model if its
predicted value of the next state s’ is higher than the
value of the actually recorded next states. This ensures that

discontinuities as in figure 1 do not result in instabilities.

D. Optimal Policy

The optimal policy 7* acts greedily with respect to
Q*(s,a, g). Again using our lazy estimate of the () function,
this results in the policy

7*(s) = argmax Q* (s, a, g) = argmax (s, 9)"a . (9)
acA acA

E. Function Approximators

Our approach is agnostic to how the state value func-
tion V*(s,g) is represented. In discrete state-goal spaces,
V*(s,g) could be represented in tabular form, in higher-
dimensional or continuous spaces however, function ap-
proximators such as neural networks are more suitable.
Suppose that V*(s,g) is represented by a neural network
parameterized by 6. The neural network is trained using the
loss function

LO) => (Vi = V*(si,0:,0))" (10)
with the targets
Y, = min {a(si,gi,ﬂ)+mzﬁcﬁ(si,gi,9)Ta, (11)
ac

max

ri +yV (s, g;,0 }
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a,B
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Fig. 2. (a) Experimental Setup: The disk is initialized at the origin in the
middle of the table. The spherical finger is controlled by the agent and is
supposed to push the disk in a certain direction specified by the goal g € G.
(b) Resulting movement (blue arrows) of the disk (light grey) when pushed
by the finger (dark grey) in normal direction (red arrows). An anisotropic
friction term results in a deflection of the disk’s movement when pushed by
the finger in diagonal direction.

Popular Q-learning algorithms such as DQN [5] and Dou-
ble DQN [6] use a separate target network to obtain the
target values Y; from. Analogously, the DQN version of
our algorithm can be obtained by replacing 6 with the
target network’s parameters 6 in (11) and, consequently,
also for the calculation of the parameters o and 5 (12).
The Double DQN algorithm on the other hand relies on
estimating the optimal action from the primary network
and then quantifying its value with the target network. The
analogous Double DQN target in our framework is

yPPON _ i {a<si7gi, 6 + B(s5, 96, 0) T aom(8),  (13)

max ri +vV (s, g;,0 }
J: (85,9;)€B(si,9:) [ 7 ( 79 t)}
with the optimal action being estimated from the primary
network

aopl(a) = argmax (Oé(Si, Gi, 0) + 6(51'7 Gi, G)Ta) (14)

acA
V. EXPERIMENTS

To provide preliminary results on the feasibility of our
framework, we apply it to a simulated robot pushing task
with realistic physics. We describe the experimental setup
and our algorithm briefly in the following.

A. Setup

1) Simulated environment: We use the NVIDIA PhysX
engine [22] to simulate a disk of radius 0.25 lying on a
table of size 1.5 x 1.5, as shown in figure 2a. The state of
the environment is given by the 2D position of a spherical
“finger” of radius 0.06 that is supposed to move the disk
in a way specified by a goal g. A goal g contains the
intended movement direction of the disk’s coordinates, given
as the angle to the z-direction. The possible actions are
movements of the finger of constant length |a| = 0.1 into any
direction. They are performed sufficiently slow so that the
system is always quasistatic. In the simulation, we include



an anisotropic friction term which results in a lateral drift
when the disk is pushed diagonally, as illustrated in figure 2b.
Thus, diagonal pushes are more sensitive to the contact point
and the direction of the push and therefore more difficult to
perform successfully.

In summary, the system has the state space S = R?,
action space A = {la|(cos(¢),sin(¢)) | ¢ € [-m,7)}, and
goal space G = [—m,m). The transition function reads
T(s,a) = s+ a. The reward function depends on the disk’s
position after the push, therefore it depends on the outcome
of the black-box simulation. If the disk has been moved by
Odisk, the reward reads

0 if ||6disk|| < 0.01
R(s,a,9) =< —1

1 if ||daisk|| > 0.01 and correct direction.
(15)

if ||daisk|| > 0.01 but wrong direction

Here, the direction is correct if the cosine of the angle
Z(dqisk, g) between dgisk and (cos(g),sin(g)) is larger than
0.9, and otherwise wrong. Once a nonzero reward has been
received, i.e. the disk was moved, the rollout episode is
stopped and the disk is reset to the origin.

2) Calculation of the nearest neighbors: Given a point
(s0,90), we define its neighborhood in the following way:
(57 g) S B(SO,QO)’ iff

o The euclidean distance between the states is smaller

than ||s — s¢|| < 0.06, and

o the goal angle’s true distance is smaller than 0.1, i.e.

cos(gdisk — go,disk) > cos(0.1).
If B(so, go) does not contain at least 20 points, we increase
all boundaries by the factor 2!/3, in order to approximately
double the volume. This is done until the required number
is reached. We then calculate (5) using 20 points that are
randomly sampled from B(sg, go) without replacement.

3) Data collection: To collect the off-policy dataset D,
we initialize the finger’s state at 5000 random positions in
[—1,1]%, but outside the disk. From each state, we perform
2 actions into the same randomly selected direction. The
reward is recorded with respect to 100 different goals that
are sampled uniformly from G for each step. This results
in a comprehensive static dataset that allows us to test our
algorithm in an isolated way.

4) Agent architecture and training procedure: We repre-
sent V*(s,g,0) as a neural network with 9 fully connected
layers and batch normalization layers [23] in alternating
order, implemented in Tensorflow [24]. We train the archi-
tecture on the static dataset, using targets as in (11) with
discount factor v = 0.9. We use ADAM [25] optimization
steps. After this, the targets are updated and the entire process
is repeated until convergence. In total, we use 10 such cycles
with 10 training epochs each.

B. Results

Figure 3 shows the learned V*(s, g,0) as function of the
state s for two different goals g. We test the performance of
the agent by initializing the disk at the origin and initializing
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Fig. 3. Learned optimal state value function V*(s, g, ) as a function of
the state s = (z1, z2), shown for the goals (a) g = 7/2, for which positive
rewards have been collected and (b) g = 57/4, for which the naive random
exploration scheme did not obtain sufficient positive rewards.
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Fig. 4. Pushing task results for a trained agent. For each of 16 different
goal directions g, 20 episodes are rolled out for 50 steps or until the disk is
moved, i.e. a nonzero reward is received. The 16 histograms show relative
frequencies of the outcome after each episode.

the finger at random positions in [—1,1]? that are on the
opposite side of the goal direction. For 16 different goals,
we perform 20 rollouts each that are stopped once the disk
has been moved, i.e. a nonzero reward is received, or after
50 steps. We measure if the disk has been pushed in the
correct direction (0.9 < cos Z(d4isk, g)), if it has been pushed
but into a wrong direction (-1 < cos Z(dagisk,g) < O or
0 < cos Z(daisk, g) < 0.9), or if has not been pushed at all
after 50 steps.

Figure 4 shows the results. Due to the anisotropic friction
term, the disk’s movement along diagonal directions is very
sensitive to the contact point and the direction of the push. In
these cases, positive rewards are very unlikely to be obtained
with our naive random data collection method. Based on this
data, the agent generally learns the correct behavior, namely
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Fig. 5. The disk’s trajectories during 10 randomly chosen rollouts on the
table (grey). The starting points are diamond-shaped, and the goal areas
are indicated by circles. The successful rollouts are shown in green, and an
unsuccessful rollout is shown in red. Since we only use the goal directions
0, m/2, 7, and 37 /2 in this experiment, the disk is pushed along diagonal
trajectories in a zigzag path.

not touching the disk at all. This can also be seen from the
value function V*(s,g = 57/4) shown in figure 3b. For
the vertical and horizontal goal directions however, positive
rewards can be found even by random exploration, allowing
the agent to learn from this data and perform the pushing
task into these directions reliably.

In a second experiment, we tested the resulting goal-
conditioned policy in conjunction with a higher-level con-
troller in order to fulfill a long-horizon pushing task. The
high-level controller specifies the direction in which the
disk is supposed to be moved during the next step. This
is expressed in the form of a goal to the goal-conditioned
policy that was described before. Let x be the 2D position
of the disk, and let x* be its intended target state. At each
step, the high-level controller sets the direction x* — x as
the new goal. We only use the goal directions 0, 7/2, m,
and 37 /2 that the agent can fulfill reliably, and follow the
one that is best aligned with the direction of x* — x. We
let the agent act for 300 steps at most, and count the run
as successful if the agent succeeds to push the disk within
[|x* — x|| < 0.05 before running out of time.

Both the disk and its target position are initialized at
random positions within [—0.6,0.6]%, i.e. on the table. The
robot finger is initialized at random positions outside the
disk that are within a box of size 1.2 x 1.2 around the disk’s
position. In total, we conducted 100 rollouts, of which 95
succeeded. During 5 of the rollouts, the agent became stuck
in a local minimum or pushed the disk off the table. Figure
5 shows 10 of the rollouts.

VI. CONCLUSIONS

We introduced a framework that combines an eagerly
learned state value function with a lazily learned action value
model to obtain goal-conditioned policies for continuous
action spaces. The core idea is that the value information,
being global in nature, is learned eagerly, while the dynamics
information, being local in nature, is learned lazily in a sep-
arate step. We demonstrated the feasibility of our approach
using a goal-conditioned robot pushing task. Compared to
value-based approaches like plain Q-learning, our approach
can be applied to continuous action spaces as well. Compared
to policy-gradient approaches like actor-critic, our approach
is less complex, since we only have to learn a single
value function. We believe that especially for applications in
robotics, where the actions per time step are small and local
action value models work well, this could be an interesting
avenue for future research.
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